

ICC Evaluation Service, Inc. www.icc-es.org Business/Regional Office = 5360 Workman Mill Road, Whittier, California 90601 = (562) 699-0543 Regional Office = 900 Montclair Road, Suite A, Birmingham, Alabama 35213 = (205) 599-9800 Regional Office = 4051 West Flossmoor Road, Country Club Hills, Illinois 60478 = (708) 799-2305

# Legacy report on the BOCA *National Building Code*/1996, the 1997 *Standard Building Code*, the 1997 *Uniform Building Code*, and the 1995 CABO One and Two Family Dwelling Code

DIVISION 06—WOOD AND PLASTICS Section 06090—Wood and Plastic Fastenings

SIMPSON STRONG-TIE® CONNECTORS

SIMPSON STRONG-TIE COMPANY, INC. 4637 CHABOT DRIVE SUITE 200 PLEASANTON, CALIFORNIA 94588

#### 1.0 SUBJECT

Simpson Strong-Tie Connectors:

- 1.1 A34/A35, A35F Framing Anchors
- 1.2 DS Drywall Stops
- 1.3 FC Framing Clips
- **1.4** HH Header Hangers
- **1.5** J and JP Floor Jacks
- 1.6 L-30, L-50, L-70, and L-90 Reinforcing Angles
- 1.7 NCA Nailess Metal Bridging
- 1.8 NBA Nail-Type Metal Bridging
- 1.9 SA and HSA Strap Anchors
- 1.10 ST, FHA, MST, MSTI, CMST and HST Strap Ties
- 1.11 TB Tension Bridging
- 1.12 TC Truss Connector
- **1.13** VB and VBP-Knee Brace
- **1.14** THMA Truss Hanger Multiple
- 1.15 LTS/MTS Twist Strap
- **1.16** CS16, 18, 20, 22 Coiled Strap
- 1.17 WB Wall Bracing
- 1.18 HGUS Hanger

#### 2.0 PROPERTY FOR WHICH EVALUATION IS SOUGHT

Structural connection for wood construction

- 3.0 DESCRIPTION
- 3.1 A34/A35, A35F:

The connectors are die-formed from No. 18 gage galvanized steel conforming to ASTM A 653 LFQ specifications with a

minimum yield strength of 33,000 psi (227,500 kPa) and a minimum tensile strength of 45,000 psi (310,300 kPa). The connectors are predrilled for No. 10-1/4 gage 8d nails having a length of 1-1/2 inches (38 mm). The connectors have cutouts on each leg and a prong to aid in installation. See Figures 1, 2, and 3 of this report.

A34 - This connector is an angular section 2-1/2 inches (64 mm) long with 1-7/16 inch (37 mm) long irregular-shaped projecting legs. See Figure 1 of this report.

A35 - This connector is an angular section 4-1/2 inches (114 mm) long with 1-7/16 inch (37 mm) long irregular-shaped projecting legs. One end of the connector is slotted for a distance of 1-1/2 inches (38 mm) to allow field adjustment. See Figure 2 of this report.

A35F - This connector is a flat version of the A35 connector described above. See Figure 3 of this report.

#### 3.2 DS Drywall Stops:

The DS Drywall Stops are designed to support and provide end backing of gypsum wallboard at wall corners and wall ceiling intersections. The drywall stops replace conventional backup studs or blocking. They are formed from No. 20 gage galvanized steel having an embossed body 1-1/4 inches (32 mm) wide by 2-1/4 inches (57 mm) long with a centered leg outstanding 1 inch by 1 inch (25.4 mm by 25.4 mm). Attachment is by two prongs and one 8d common nail in the outstanding leg or a No. 6 sheet metal screw when attaching to metal studs. The DS Drywall Stop is installed to the corner of the stud or plate, such that the outstanding leg is attached to the short dimension. The steel that forms the DS Drywall Stop conforms to ASTM A 653 LFQ specifications with no minimum tensile or ultimate tensile strength required.

One half of the base body rests upon the wide dimension and the other half of the base body provides the support for the gypsum wallboard. The device is to be installed at a maximum spacing of 16 inches (406 mm) on center. The DS Drywall Stop has not been evaluated as a component in fire resistant rated construction. For conventional wood frame construction, lateral resistance shall not be assumed to be provided by assemblies using DS Drywall Stops. See Figures 4 and 5 of this report.

#### 3.3 FC Framing Clips:

The FC Framing Clips are alternatives to cripple studs. The clips have a 1-1/4 inch (32 mm) deep bearing seat for window sill members at studs or mullions and to fasten posts to sill plates for gravity loads. The clips are manufactured from No. 16 gage galvanized steel for 3-9/16 inch (90 mm) (FC4), 5-1/2



ICC-ES legacy reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, Inc., express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

inch (140 mm) (FC6), and 7-1/2 inch (191 mm) (FC8) wide members. The steel that forms the FC Framing Clips conforms to ASTM A 653 LFQ specifications with a minimum yield strength of 28,000 psi (193,100 kPa) and a minimum tensile strength of 38,000 psi (262,000 kPa). See Figures 6 and 7 of this report.

#### 3.4 HH Header Hangers:

The HH Header Hangers are alternatives to cripple studs at wood headers. The hangers are fabricated from No. 16 gage galvanized steel for post mullion widths of 3-5/8 inches (92 mm) (HH4) and 5-1/2 (140 mm) (HH6) inches. The hangers provide a 2 inch (51 mm) deep saddle seat for the header fastened to both sides of the header and post and the post face under the header with 16d nails. The steel that forms the HH Header Hangers conforms to ASTM A 653 LFQ specifications with a minimum yield strength of 28,000 psi (193,100 kPa) and a minimum tensile strength of 38,000 psi (262,000 kPa). See Figures 8, 9, and 10 of this report.

#### 3.5 J and JP44 Floor Jacks:

The JP44 floor jack is intended for use in combination with a 4 inch by 4 inch (102 mm by 102 mm) wood post as an adjustable pier support for floor beams. The floor jack consists of a U-shaped retainer element of No. 12 gage steel with provisions for four 16d common nails into the posts. A 3/4 inch (19.1 mm) diameter by 4-3/4 inch (121 mm) long threaded rod is welded to the seat with a 1/8 inch (3.2 mm) fillet weld. A similar U-shaped No. 12 gage support is provided with a centered hole for passage of the threaded rod. A 3/4 inch (19.1 mm) nut, washer, keeper and plastic shim provide means of attachment and adjustment. The device shall be installed with a predrilled hole into either the beam or the post end to provide a sleeve for the threaded rod.

The J floor jack has been evaluated for use as an adjustable beam support pier. It is identical to the JP44 jack pier except that 4 inch (102 mm) (J57) or 8 inch (203 mm) (J813) long threaded rod lengths are provided, received by 1-1/16 inch (27 mm) outside diameter by 3/4 inch (19.1 mm) inside diameter Schedule 40 steel pipe in lengths from 5 inches (127 mm) to 21 inches (533 mm). The pipe is welded with 1/8 inch (3.2 mm) fillet welds to a No. 12 gage steel base plate 3-1/4 inches (83 mm) by 3-1/2 inches (89 mm) with provisions for four 16d common nails.

The steel that forms the J and JP44 Floor Jacks conforms to ASTM A 570 specifications with a minimum yield strength of 33,000 psi (227,500 kPa) and a minimum tensile strength of 52,000 psi (358,500 kPa). See Figures 11, 12, and 13 of this report.

#### 3.6 L-30, L-50, L-70, and L-90 Framing Connectors:

These connectors are fabricated from No. 16 gage galvanized steel and are prepunched for 10d common nails. The connectors are right angle sections measuring 2-3/8 inches (60 mm) by 1-3/8 inches (35 mm) by 3 inches (76 mm) (L30), 5 inches (127 mm) (L50), 7 inches (178 mm) (L70), or 9 inches (229 mm) (L90). The connectors have cutouts on each leg and a prong to aid in installation. The steel that forms the connectors conforms to ASTM A 653 LFQ specifications with a minimum yield strength of 28,000 psi (193,100 kPa) and a minimum tensile strength of 38,000 psi (262,000 kPa). See Figure No. 14 of this report.

#### 3.7 NCA Nailess Metal Bridging:

This bridging is an alternative to cross bridging. It has not been evaluated as bracing for seismic, wind, or bearing locations. The bridging is supplied in various lengths for joist sizes ranging from 2 inches (51 mm) by 8 inches (203 mm) to 2 inches (51 mm) by 16 inches (406 mm) and for joist spacing of 12, 16, and 24 inches (305, 406, and 610 mm) on center. The nailess metal bridging is formed into a right angled section with 1/2 inch (12.7 mm) long legs. One end of the bridging is formed to provide an angular prong projection 1/2 inch (12.7 mm) long on each side of a shoulder 5/16 inch (7.9 mm) wide. The prongs penetrate the wood to the shoulder upon driving of the bridging with hammer blows applied at the opposite end. The opposite end has a right angle bend from which three angular-shaped teeth protrude 3/8 inch (9.5 mm) and are spaced at 7/16 inch (11.1 mm) on center. When the shoulder rests against the joist, the prongs are driven into the wood with hammer blows. The bridging is installed either from the top or bottom and before or after the sheathing is installed. The bridging is formed from No. 16, 18, and 20 gage galvanized steel conforming to ASTM A 653 LFQ, with a minimum yield strength of 28,000 psi (193,100 kPa) and a minimum tensile strength of 38,000 psi (262,000 kPa). See Figure 15 of this report.

#### 3.8 NBA Nail-Type Metal Bridging:

This bridging is an alternative to cross bridging. It has not been evaluated as bracing for seismic, wind, or bearing locations. The nail-type bridging is identical to the nailess bridging described above, except the ends are flattened to provide a 1-1/4 inch (32 mm) long section for attachment with two No. 10-1/4 gage 1-1/2 inch (38 mm) long nails at each end. Joist sizes, spacings, and bridging identification are identical to the nailess bridging. The bridging is installed either from the top or bottom by locating the bend line approximately 1-3/8 inch (35 mm) from the joist corner and before or after sheathing is installed. The bridging is formed from 16, 18, and 20 gage steel conforming to ASTM A 653 LFQ specifications with a minimum yield strength of 28,000 psi (193,100 kPa) and a minimum tensile strength of 38,000 psi (262,000). See Figure 16 of this report.

### 3.9 SA and HSA Strap Anchors:

As indicated in Figures 18 and 19 of this report, the SA and HSA strap anchors are designed to provide horizontal tension ties across intervening members. As indicated in Figure 17 of this report, the SA 36 strap anchor is punched to provide for installation of two 1/2 inch (12.7 mm) diameter bolts or eleven 16d common nails at each end. The SA 36 strap anchor is formed from No. 12 gage galvanized steel conforming to ASTM A 653 CQ with a minimum yield strength of 28,000 psi (193,100 kPa) and a minimum tensile strength of 38,000 psi (262,000). The HSA heavy strap anchors are similar to the SA strap anchors, except they are formed from No. 3 gage painted uncoated steel conforming to ASTM A 570 with a minimum yield strength of 33,000 psi (227,500) and a minimum tensile strength of 52,000 psi (358,500). See Table 8 of this report for the available sizes of the HSA anchors.

#### 3.10 ST, FHA, MST, MSTI, CMST, and HST Tie Straps:

The tie straps are designed to act as tension ties between two butting wood members. The ST and MST tie straps are punched to receive 16d common nails. As an alternative to nails, the MST straps are also punched to receive 1/2 inch (12.7 mm) diameter bolts spaced 5-1/4 inches (133 mm) on center parallel to the strap. The FHA tie straps are punched to receive four 16d common nails each end. The MSTI tie straps are punched to receive 10d common nails. The CMST Strap is supplied in 40 foot (12.2 m) long coils to allow members separated by long distances to be joined to transfer tension between them. The CMST is cut to length for applications less than 40 feet (12.2 m). The strap is punched for 16d common nails. The HST tie straps are punched to receive either 5/8 inch (15.9 mm) or 3/4 inch (19.1 mm) diameter machine bolts in one or two rows at each end with bolt holes arranged about the center of the strap length to provide the required bolt spacings and end distances. See Tables No. 9A and 9B of this report for the available sizes and material specifications of the straps and Figure 20 of this report for the tie strap configurations.

#### 3.11 TB Tension Bridging:

The TB tension bridging has a right angled section with flattened ends 1 inch (25.4 mm) wide. The tension bridging is available in several lengths from 20 inches (508 mm) to 60 inches (1524 mm) with nail holes at each end. Two 10d common nails are required at each end to provide the normal tension load capacity of 235 pounds (107 kg). The tension bridging is formed from No. 20 gage galvanized steel conforming to ASTM A 653 LFQ with a minimum yield strength of 28,000 psi (193,100 kPa) and a minimum tensile strength of 38,000 psi (262,000 kPa). See Figure 21 of this report.

#### 3.12 TC Truss Connector:

The TC truss connectors are die formed from No. 16 gauge galvanized steel. The TC connectors are designed to attach roof framing to a top plate or floor framing to a mudsill to resist uplift forces. The TC connectors have slotted nail holes to allow for up to 1-1/4 inches (32 mm) of horizontal movement. The TC24 has 4 slotted nail holes while the TC26 has five slotted nail holes. The steel that forms the TC truss connectors conforms to ASTM A 653 LFQ specifications with a minimum yield strength of 28,000 psi (193,100 kPa) and a minimum tensile strength of 38,000 psi (262,000 kPa). See Figure 22 of this report.

#### 3.13 VB and VBP-Knee Braces:

The braces are twisted through a 90 degree angle to lie flat against the bottom of the beam and against purlins framing perpendicular to the braced beam as shown in Figure 23 of this report. The VB brace has six N54A nails (1/4 inch (6.4 mm) diameter) at the top of each leg and two into the bottom and one into each vertical tab at the bottom of the braced beam. The VBP is a two piece knee brace which is required to be installed in pairs. The VBP braces have six N54A nails [1/4 inch (6.4 mm) diameter] at the top of each leg and two into the bottom and one into the vertical tab near the bottom of the braced beam. The VB and VBP knee braces are available in five models as follows: VB-5 and VBP-5 [10 inch to 15 inch (254 mm to 381 mm) beam depth], VB-7 and VBP-7 [15 inch to 22-1/2 inch (381 mm to 572 mm) beam depth], VB-8 and VBP-8 [22-1/2 inch to 28-1/2 inch (572 mm to 724 mm) beam depth], VB-10 [28-1/2 inch to 36 inch (572 mm to 914 mm) depth], and VB-12 [36 inch to 42 inch (914 mm to 1,067 mm) beam depth]. The braces are to be installed at an approximate 45 degree angle with a minimum 1-3/8 inch (35 mm) edge distance for nails.

The knee braces are designed to laterally support the bottom side of the beam and are not designed for use as a seismic tie. Allowable lateral resistance at the bottom of the beams furnished by the knee brace with legs at 45 degrees is 990 pounds (449 kg) (tension in the strap) for normal duration loads and 1240 pounds (563 kg) for short-term duration wind loads. When brace legs are installed at 30 degrees or 60 degrees, the allowable loads are 700 pounds (318 kg) (tension in the strap) and 875 pounds (397 kg), respectively, for long and short term loads. Straight line interpolation between maximum and minimum values is permitted. The braces are fabricated from No. 12 gage galvanized steel conforming to ASTM A 653 CQ specifications with a minimum yield strength of 28,000 psi (193,100 kPa) and a minimum tensile strength of 38,000 psi (262,000 kPa). See Figure 23 of this report.

#### 3.14 THMA and THMA-2 Truss Hanger Multiple:

The THMA and THMA-2 hangers are designed to carry multiple truss members. The THMA is designed to carry a single ply jack and two single ply hip members. The THMA-2 is designed to carry a single ply jack and two two-ply hip members. Both the THMA and THMA-2 are fabricated from 12 GA galvanized steel. To maintain the required bolt end

spacing, the bottom chord of the carrying truss shall not be greater than a 2 inch by 6 inch (51 mm by 152 mm) member when the THMA is used, and a 2 inch by 8 inch (51 by 203 mm) member when the THMA-2 is used. The steel which forms the hangers conforms to ASTM A 653 SQ Grade 33 specifications with a minimum yield strength of 33,000 psi (227,500 kPa) and a minimum tensile strength of 45,000 psi (310,300 kPa). See Figures 24 and 25 of this report.

#### 3.15 LTS and MTS Twist Strap:

The LTS Light Twist Strap is 1-1/4 inches (32 mm) wide and is formed from 18 gage galvanized steel. The MTS Twist Strap is formed from 16 gage galvanized steel and is 1-1/4 inches (32 mm) wide. The steel that forms both straps meets ASTM A527 specifications with a minimum yield strength of 28,000 psi (193,100 kPa) and a minimum tensile strength of 38,000 psi (262,000 kPa). The straps are available in sizes as indicated in Table No. 13 of this report. See Figure 26 of this report.

#### 3.16 CS16, 18, 20, 22 Coiled Strap:

The CS16, 18, 20, 22 Coiled Straps are 16, 18, 20, and 22 gage galvanized steel respectively. All CS straps are 1-1/4 inches (32 mm) wide punched with 9/64 inch (3.6 mm) holes spaced 1 inch (25.4 mm) on center. All CS straps are available coiled in cartons and are cut to length as required. The steel that forms the CS straps meets ASTM A 653 LFQ specifications with a minimum yield strength of 33,000 psi (227,500 kPa) and a minimum tensile strength of 45,000 psi (310,300 kPa). See Figures 27 and 28 of this report.

#### 3.17 WB Wall Brace:

The WB Wall Bracing is intended to square the wall during construction. The WB Wall Bracing strap is installed on a stud wall constructed of 2x4 Douglas Fir spaced 16 inches (406 mm) on center with double top plates and single bottom plates. The strap is installed at a 60° angle from the horizontal with 2-16d nails in the top plate, 2-16d nails in the bottom plate, and 1-8d nail at each stud. The WB is supplied flat or coiled, in three sizes, and is formed from 16 gage galvanized steel. The steel that forms the WB brace meets ASTM A 653 SQ Grade 33 specifications with a minimum yield strength of 33,000 psi (227,500 kPa) and a minimum tensile strength of 45,000 psi (310,300 kPa). See Table No. 15, and Figures 29 and 30 of this report for available sizes and installation configurations.

#### 3.18 HGUS Hanger:

The HGUS Hangers are formed from 12 gage galvanized steel. The hangers have a U shaped configuration and uses the slant nail in which the nail is driven at an angle through the joist and into the header. The product is supplied in two widths and three heights for a total of six sizes. The steel that forms the hangers meets ASTM A 653 SQ Grade 33 specifications with a minimum yield strength 33,000 psi (227,500 kPa) and a minimum tensile strength of 45,000 psi (310,300 kPa). See Tables No. 16A and 16B and Figure 31 of this report for available sizes of the HGUS Hangers.

#### 3.19 Materials:

Galvanized connectors conform to ASTM A 525, G 60. J and JP Floor Jacks and HSA Strap Anchor connectors have a painted coating, rather than being galvanized.

#### 3.20 Nails:

Nails used with the Simpson Strong-Tie products described in this report shall comply with Federal Specification FF-N-105B and have the following minimum bending yield strength,  $F_{vb}$ :

| Nail Penny<br>Weight<br>Common-Type | Nominal Nail<br>Diameter<br>(inch) | Minimum F <sub>yb1</sub><br>(psi) |
|-------------------------------------|------------------------------------|-----------------------------------|
| 8d                                  | 0.131                              | 100,000                           |
| 10d                                 | 0.148                              | 90,000                            |
| 12d                                 | 0.148                              | 90,000                            |
| 16d                                 | 0.162                              | 90,000                            |

#### Notes:

1. 1 inch equals 25.4 mm.

2. 1psi equals 6.895 kPa.

N54A nails are 1/4" x 2-1/2" long annular ring shank,  $F_{yb} = 70,000$  psi.

#### 4.0 DESIGN AND INSTALLATION

See Tables 1 though 16B of this report for the allowable loads of the Simpson Strong-Tie Connectors contained in this report. Load capacities are based on wood having a specific gravity of 0.5 or greater as defined in the *1991 National Design Specification for Wood Construction (NDS)*. Values in this report are for connections in wood seasoned to a moisture content of 19 percent or less used under continuously dry conditions and where sustained exposure to temperatures of 100°F or less is experienced.

The design of the connected wood members shall be submitted to and approved by the local building official. Tabulated design loads for the connectors are based on the lowest load obtained from comparing:

- least test load that causes 1/8 inch (3.2 mm) deflection.
- lowest ultimate test load with a safety factor of 3.
- allowable fasteners and compression perpendicularto-grain values in accordance with the 1991 AFPA National Design Specification® for Wood Construction, based on wood with a specific gravity of 0.50.
- rational analysis for non-gravity resisting fasteners, which are not load tested.

The manufacturer's installation instructions shall be adhered to and a copy of these instructions shall be available at all times on the job site during installation.

#### 5.0 IDENTIFICATION

Each of the connectors described in this report shall be stamped with the words "Simpson Strong-Tie", the connector's model number, and this NER Report Number for field identification.

#### 6.0 EVIDENCE SUBMITTED

6.1 Load tests performed by TEI Consulting Engineers.

Reports signed and sealed by Rostam Estandiari, P.E.

| ITEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v                                                     | VORK NO.                                                                                                                                                                                                                                                                                                                                                                                             | DATE                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A35F<br>A35(F <sub>2</sub> )<br>A35(F)<br>A35(C)<br>A35(A)<br>A35(A)<br>A35(A)<br>A35(A)<br>A34(F <sub>2</sub> )<br>A34(F <sub>2</sub> )<br>A34(F <sub>2</sub> )<br>A34(F)<br>HH4(F <sub>3</sub> )<br>HH4(F <sub>3</sub> )<br>HH4(F <sub>2</sub> )<br>L90(F <sub>1</sub> )<br>L50(F <sub>1</sub> )<br>L50(F <sub>1</sub> )<br>L30(F <sub>1</sub> )<br>SP1<br>TC26<br>TC24<br>THM<br>THM<br>LTS12<br>HGUS28-2 (<br>HGUS<br>LUS210 (To<br>A35F<br>VBA<br>THM<br>THM<br>THM<br>THM<br>THM<br>THM | Uplift)                                               | 87005-29<br>89008-104<br>89008-39<br>87005-101<br>87005-103<br>87005-104<br>87005-79<br>87005-79<br>87005-78<br>87005-78<br>87005-78<br>87005-78<br>87005-88<br>87005-89<br>87005-80<br>87005-81<br>87005-81<br>87005-81<br>87005-78<br>87005-37<br>87005-38<br>87005-74<br>89008-61<br>89008-73<br>89008-73<br>89008-75<br>89008-83<br>89008-84<br>90111-108<br>92002.136<br>92002.117<br>92002.114 | 7-09-87<br>11-15-89<br>8-01-89<br>1-15-88<br>1-15-88<br>1-15-88<br>12-15-87<br>12-18-87<br>12-18-87<br>1-02-87<br>12-28-87<br>12-28-87<br>12-28-87<br>12-28-87<br>12-15-87<br>12-15-87<br>12-15-87<br>12-18-87<br>12-18-87<br>12-29-87<br>12-29-87<br>10-27-87<br>8-28-89<br>9-18-89<br>9-18-89<br>9-18-89<br>10-10-89<br>10-10-89<br>10-20-92<br>10-20-92<br>10-14-92<br>10-14-92 |
| ITEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FILE                                                  | LAB                                                                                                                                                                                                                                                                                                                                                                                                  | DATE                                                                                                                                                                                                                                                                                                                                                                               |
| HSA<br>HSA41<br>HSA59<br>HSA68                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01329<br>01329<br>01329<br>01329<br>01329             | M3034<br>M3034<br>M3051<br>M3051                                                                                                                                                                                                                                                                                                                                                                     | 3-26-86<br>3-26-86<br>3-28-86<br>3-28-86<br>3-28-86                                                                                                                                                                                                                                                                                                                                |
| Reports sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reports signed and sealed by David B. Jankowski, P.E. |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                    |
| ITEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W                                                     | /ORK NO.                                                                                                                                                                                                                                                                                                                                                                                             | DATE                                                                                                                                                                                                                                                                                                                                                                               |
| A35(C₁)<br>A35(C₂)<br>A35(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       | 85286<br>85286<br>85286                                                                                                                                                                                                                                                                                                                                                                              | 2-14-86<br>2-14-86<br>2-14-86                                                                                                                                                                                                                                                                                                                                                      |
| ITEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FILE                                                  | LAB                                                                                                                                                                                                                                                                                                                                                                                                  | DATE                                                                                                                                                                                                                                                                                                                                                                               |

Report signed by R. C. Helminiak

01329

SA36

| ITEM   | FILE   | LAB    | DATE     |
|--------|--------|--------|----------|
| JP & J | 060033 | 810136 | 10-27-78 |

MD050

1-06-86

Report signed by D. L. Olson

| ITEM | FILE | LAB      | DATE    |
|------|------|----------|---------|
| FC-4 | 424  | OL11-171 | 1-28-69 |

Reports signed and sealed by Ahmed M. Rashed, Ph.D., P.E.

| ITEM         | FILE      | DATE    |
|--------------|-----------|---------|
| A34(F1)      | 94010.037 | 3-08-94 |
| A35(F1)      | 94010.030 | 3-08-94 |
| L30(F1)      | 94010.031 | 3-08-94 |
| L50(F1)      | 94010.032 | 3-08-94 |
| L90(F1)      | 94010.033 | 3-08-94 |
| HGÙSŹ6-2     | 94010.065 | 4-11-94 |
| HGUS(Uplift) | 94010.038 | 3-17-94 |
| HGUS(Uplift) | 94010.039 | 3-17-94 |
| HGUS210-2    | 94010.036 | 3-08-94 |

Report signed and sealed by Roger S. Tansley, P.E.

| ITEM     | FILE      | DATE    |
|----------|-----------|---------|
| HGUS28-2 | 94010.068 | 4-18-94 |
| DS       | 95001.016 | 2-15-95 |
| WB106    | 95001.062 | 4-17-95 |

Report signed and sealed by Paul E. Cox, P.E.

| ITEM   | FILE     | DATE     |
|--------|----------|----------|
| MTS 30 | 97002.55 | 10-29-97 |

6.2 Structural calculations prepared by Simpson Strong-Tie Company, Inc.

Signed and sealed by Karen W. (Littleton) Colonias, P.E.

| ITEM                                                                                                                                                                                                                                                                                                                                                                                                | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TB<br>HST<br>MST<br>FHA<br>ST<br>TC<br>THM<br>A34/35<br>FC<br>HH<br>L<br>NB & NC<br>SA<br>HSA<br>SP<br>A35/A35F<br>WB106/WB126<br>LTS<br>CS150<br>WBC<br>HGU<br>A35(F <sub>2</sub> )<br>HGUS<br>A34,A35<br>A35F<br>FC<br>HH<br>L<br>NB/NC<br>NB/NC<br>NB/NC<br>SA/HSA<br>CMST12<br>ST<br>TB<br>TC<br>VB<br>VBP<br>THMA<br>THMA-2<br>TS,LTS<br>CS<br>S<br>WB/WBC<br>HGUS<br>WB/WBC<br>HGUS<br>WB/WBC | 5-13-85<br>7-14-86/rev. 9/14/93<br>12-10-87/rev. 9/14/93<br>12-10-87<br>2-02-88/rev. 9/14/97<br>12-10-87<br>2-02-88/rev. 1-11-91<br>12-10-87<br>12-10-87<br>12-10-87<br>12-10-87<br>5-13-85<br>5-13-85<br>5-13-85<br>5-13-85<br>5-13-85<br>5-13-85<br>5-31-90<br>8-17-88<br>5-31-90<br>8-17-88<br>5-02-90/rev. 1/11/91<br>5-31-90<br>4-15-91<br>9-14-93/rev. 6/21/94<br>9-14-93/rev. 6/21/94<br>9-14 |

Signed and sealed by Evon M. C. Ballash, P.E.

| ITEM   | DATE                  |  |
|--------|-----------------------|--|
| CMST14 | 8-16-94/rev. 10/19/95 |  |

Signed and sealed by Daphne N. Schoner, P.E.

| ITEM  | DATE    |  |
|-------|---------|--|
| MTS30 | 3/16/98 |  |

**6.3** Structural calculations for Nail-less Metal Bridging, prepared by Alan R. McKay and Associates, signed by

Alan R. McKay, P.E., dated February 27, 1963.

6.4 Structural calculations prepared by Kenneth D. Smetts, Structural Engineer, signed and sealed by Kenneth D. Smetts, P.E.

| ITEM                               | DATE                |  |
|------------------------------------|---------------------|--|
| VB Knee Brace<br>JP & J Jack Piers | 4-06-76<br>10-30-78 |  |

**6.5** Structural calculations for 1991 NDS, sample nail and bolt calculations, 6/15/94, signed and sealed by Karen W. Colonias, P.E.

#### 7.0 CONDITIONS OF USE

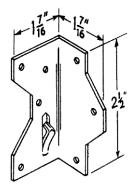
The National Evaluation Service Committee finds that Simpson Strong-Tie Company, Inc.'s connectors described in this report comply with the BOCA *National Building Code*/1996, the 1997 *Standard Building Code*, the 1997 *Uniform Building Code*, and the 1995 CABO One and Two Family Dwelling Code, subject to the following conditions:

- 7.1 Connector loads shall be determined in accordance with the applicable code. The allowable loads shall not exceed those shown in the tables of this report. Loads in the tables are based on the use of fasteners indicated in the tables, and limited to wood with a minimum specific gravity of 0.50 and a moisture content less than 19 percent. The scope of this evaluation report is limited to use of these connectors with lumber that has not been pressure treated with chemicals such as those for fire-retardant treatment and preservative treatment, or with metal studs as indicated in Section 3.2 of this report.
- **7.2** Allowable loads in the attached tables are for connectors only. All framing members shall be designed in accordance with the requirements of their appropriate design specifications as referenced in the applicable Model Code.
- 7.3 Loads designated as 100% are permitted to be adjusted for duration of load in accordance with the 1991 AFPA National Design Specification® for Wood Construction.
- **7.4** Beams or headers supporting joists shall have the following minimum widths based on nail sizes attaching the hangers to the beams or headers:

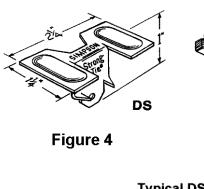
| NAIL SIZE | BEAM OR HEADER WIDTH  |
|-----------|-----------------------|
| 8d        | 1.57 inches (39.9 mm) |
| 10d       | 1.78 inches (45.2 mm) |
| 16d       | 1.94 inches (49.3 mm) |

- **7.5** NC, NB, and TB Bridging shall be installed in pairs with spacing and location in accordance with the applicable code.
- 7.6 Where NC and NB Bridging is used on 16 inch (406 mm) deep joists, the joist spacing shall not exceed 16 inches (406 mm) on center.
- 7.7 The Simpson DS Drywall Stops have not been evaluated for use as a component of a fire-resistance rated assembly, or a horizontal diaphram.
- **7.8** Calculations shall be submitted at time of permit application. Calculations shall be signed and sealed by a registered professional engineer or architect when required by the adopted code.
- 7.9 This report is subject to re-examination on a periodic basis. For information on the current status of this report, contact the ICC-ES.

| A35F FRAMING ANCHOR |           |                |               |  |  |  |  |  |
|---------------------|-----------|----------------|---------------|--|--|--|--|--|
| TYPE OF             | DIRECTION | ALLOV<br>LO/   | VABLE<br>Ads  |  |  |  |  |  |
| CONNECTION          | OF LOAD   | FLOOR<br>(100) | ROOF<br>(125) |  |  |  |  |  |
| See A35F            | G         | 500            | 500           |  |  |  |  |  |
| Illustration        | J         | 265            | 265           |  |  |  |  |  |
|                     | Н         | 440            | 440           |  |  |  |  |  |


# TABLE 1

| TABLE : | 3 |
|---------|---|
|---------|---|


| A34 FRAMING ANCHOR |           |                    |               |  |  |  |  |  |  |
|--------------------|-----------|--------------------|---------------|--|--|--|--|--|--|
| TYPE OF            | DIRECTION | ALLOWABLE<br>LOADS |               |  |  |  |  |  |  |
| CONNECTION         | OF LOAD   | FLOOR<br>(100)     | ROOF<br>(125) |  |  |  |  |  |  |
| K.                 | F1        | 345                | 365           |  |  |  |  |  |  |
| 1                  | F2        | 280                | 280           |  |  |  |  |  |  |

1. A34: Use (8) 8d x  $1^{1}\!\!/_{2}$ " nails. A35/A35F: Use (12) 8d x  $1^{1}\!\!/_{2}$ " nails

| A35 FRAMING ANCHOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                    |               |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|---------------|--|--|--|--|--|
| TYPE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DIRECTION      | ALLOWABLE<br>LOADS |               |  |  |  |  |  |
| CONNECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OF LOAD        | FLOOR<br>(100)     | ROOF<br>(125) |  |  |  |  |  |
| The state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A <sub>1</sub> |                    |               |  |  |  |  |  |
| CT CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Е              | 260                | 320           |  |  |  |  |  |
| Ser - Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C1             | 170                | 170           |  |  |  |  |  |
| The second secon | A2             | 260                | 320           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2             | 260                | 315           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D              | 150                | 150           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F1             | 450                | 450           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F <sub>2</sub> | 515                | 645           |  |  |  |  |  |



A34 Figure 1



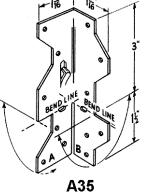
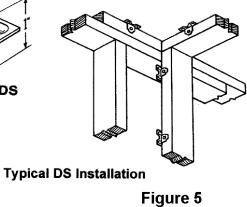
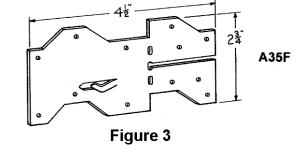
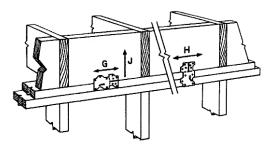
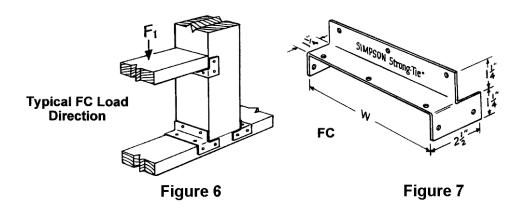






Figure 2







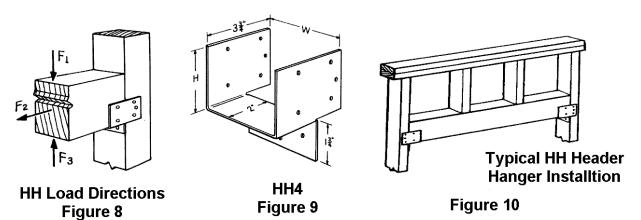

Typical A35F Installations to Transfer Shear Forces

# TABLE 2

| MODEL<br>NO. | W                  | FASTENERS | MAXIMUM<br>ALLOWABLE LOADS |
|--------------|--------------------|-----------|----------------------------|
|              |                    |           | F1                         |
| FC4          | 3 <sup>9</sup> ⁄16 | 8-16d     | 800                        |
| FC6          | 5½                 | 10-16d    | 920                        |
| FC8          | 71/2               | 12-16d    | 920                        |

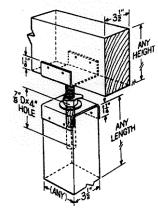
#### **TABLE 4 - FC FRAMING CLIPS**

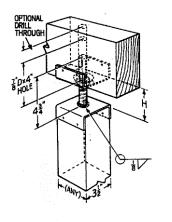
1. Minimum lumber thickness shall be  $2\frac{1}{2}$ " to achieve the table load value.




#### **TABLE 5 - HH HEADER HANGERS**

| MODEL | w                  | ц                 | FAST   | FASTENERS |      | WABLE LO       | DADS |
|-------|--------------------|-------------------|--------|-----------|------|----------------|------|
| NO.   |                    | • •               | STUD   | HEADER    | F1   | F <sub>2</sub> | F3   |
| HH4   | 3 <sup>9</sup> ⁄16 | 2 <sup>7</sup> ⁄8 | 9-16d  | 4-16d     | 1195 | 530            | 530  |
| HH6   | 5 ½                | 5 <sup>1</sup> ⁄4 | 12-16d | 6-16d     | 1595 | 800            | 800  |


1. Minimum Lumber thickness shall be  $2\frac{1}{2}$  " to achieve table load values.


2. Loads provided above are at 100% duration. Increases not to exceed 25% shall be permitted according to code.



|              | DIME           | MAXIMUM                       |                               |  |
|--------------|----------------|-------------------------------|-------------------------------|--|
| MODEL<br>NO. | H<br>(MIN-MAX) | THREADED<br>ROD LENGTH        | ALLOWABLE<br>BEARING<br>LOADS |  |
| JP44         | 2 - 4          | 4 <sup>3</sup> / <sub>4</sub> | 4440                          |  |
| J57          | 5 - 7          | 4                             | 4380                          |  |
| J813         | 8 - 13         | 8                             | 4380                          |  |

TABLE 6 - J AND JP FLOOR JACKS





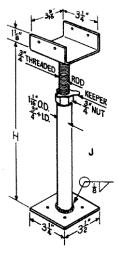
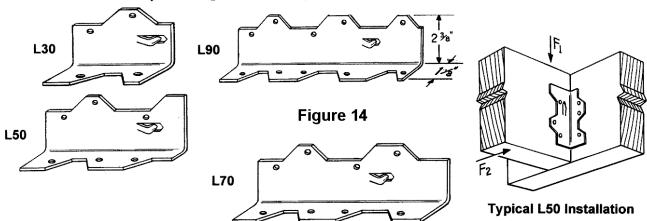
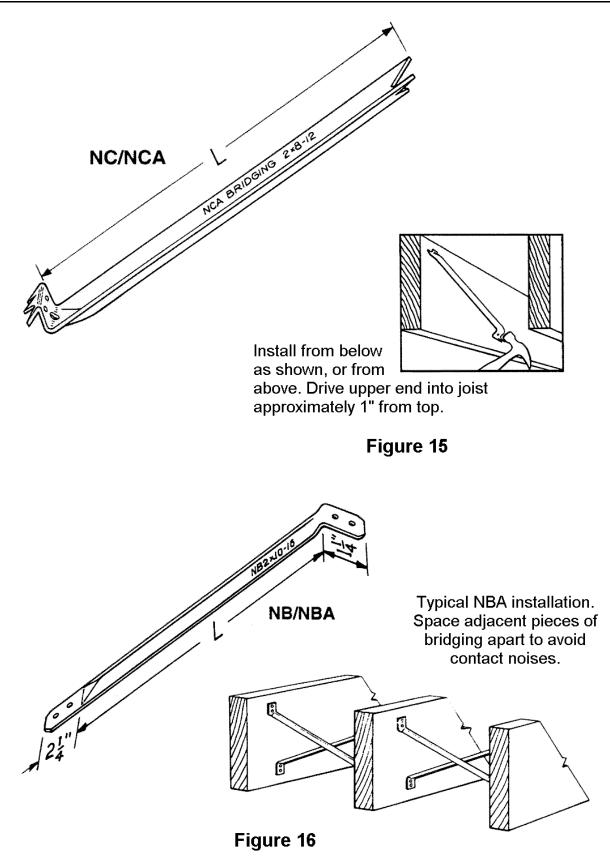



Figure 11


Figure 12


Figure 13

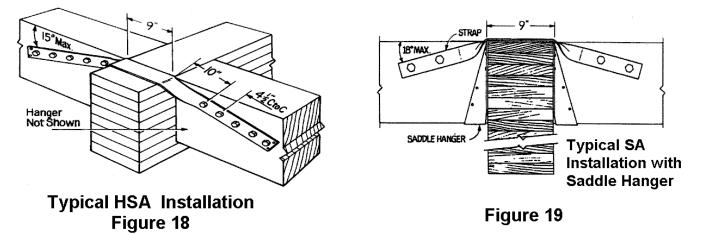
| TABLE 7 - L REINFORCING ANGLE | T | ABL | E. | 7 - | L | REIN | ORCI | NG | ANGL | ES | 5 |
|-------------------------------|---|-----|----|-----|---|------|------|----|------|----|---|
|-------------------------------|---|-----|----|-----|---|------|------|----|------|----|---|

|       |        | TOTAL         |      |      |      |      |  |  |
|-------|--------|---------------|------|------|------|------|--|--|
| MODEL | LENGTH | OF            | F    | 1    | F    | 2    |  |  |
| NO.   | LENGTH | FASTENER<br>S | 100% | 125% | 100% | 125% |  |  |
| L30   | 3      | 4-10d         | 220  | 240  | 220  | 280  |  |  |
| L50   | 5      | 6-10d         | 335  | 415  | 335  | 415  |  |  |
| L70   | 7      | 8-10d         | 445  | 555  | 445  | 555  |  |  |
| L90   | 9      | 10-10d        | 555  | 695  | 555  | 695  |  |  |

1. Minimum lumber thickness shall be  $2\frac{1}{2}$  " to achieve the table load values. Reduce table values by 10% for  $1\frac{1}{2}$ " member thickness.






| MODEL | STRAP           | DIMEN          | DIMENSIONS (TOTAL) |          | MAX. ALLOWABLE<br>HORIZONTAL LOADS |       |       |
|-------|-----------------|----------------|--------------------|----------|------------------------------------|-------|-------|
| NO.   | SECTION         | L <sub>1</sub> | L <sub>2</sub>     | NAILS    | BOLTS                              | NAILS | BOLTS |
| SA36  | 12 ga. × 2-1/16 | 36             | 9                  | 22 - 16d | 4 - 1/2                            | 1900  | 1605  |
| HSA32 | 3 ga. × 3       | 32             | 9                  | —        | 2 - 3/4                            | _     | 1910  |
| HSA41 | 3 ga. × 3       | 41             | 9                  | —        | 4 - 3/4                            | _     | 3770  |
| HSA50 | 3 ga. × 3       | 50             | 9                  | —        | 6 - 3/4                            | _     | 5470  |
| HSA59 | 3 ga. × 3       | 59             | 9                  | _        | 8 - 3/4                            | _     | 6940  |
| HSA68 | 3 ga. × 3-1/2   | 68             | 9                  | —        | 10 - 3/4                           | _     | 8350  |

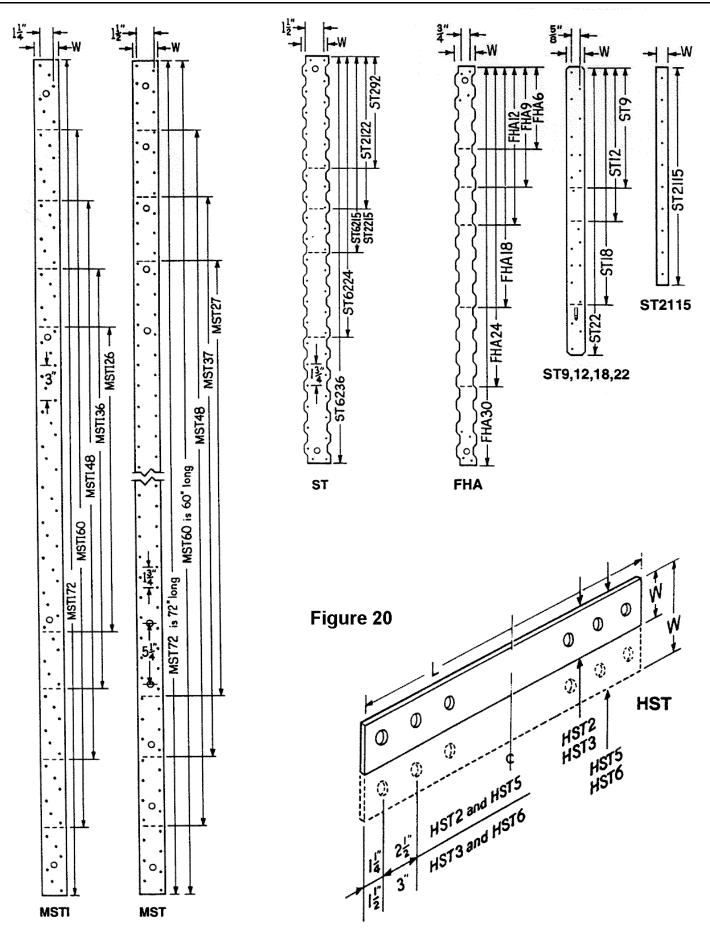
#### **TABLE 8 - SA AND HSA STRAP ANCHORS**

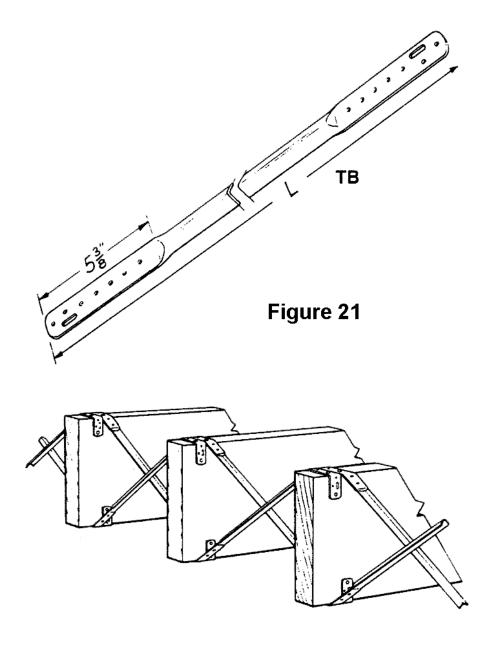
1. Allowable loads have been increased 33% for earthquake or wind loading with no further increase allowed.



SA Strap Connector Figure 17




| MODEL<br>NO. | MATL   | DIMEN                          | ISIONS               | FASTEN                                   | ERS                  |       | VABLE<br>ADS |
|--------------|--------|--------------------------------|----------------------|------------------------------------------|----------------------|-------|--------------|
| NO.          |        | W                              | L                    | NAILS                                    | BOLTS                | NAILS | BOLTS        |
| ST292        | 20 ga. | 2 <sup>1</sup> ⁄ <sub>16</sub> | 9 <sup>5</sup> /16   | 12 - 16d                                 |                      | 790   |              |
| ST2122       | 20 ga. | 2 <sup>1</sup> / <sub>16</sub> | 12 <sup>13</sup> ⁄16 | 16 - 16d                                 |                      | 1070  |              |
| ST2115       | 20 ga. | 3⁄4                            | 16 <sup>5</sup> ⁄16  | 10 - 16d                                 |                      | 450   |              |
| ST2215       | 20 ga. | 2 <sup>1</sup> /16             | 16 <sup>5</sup> ⁄16  | 20 - 16d                                 |                      | 1270  |              |
| ST6215       | 16 ga. | 2 <sup>1</sup> /16             | 16 <sup>5</sup> ⁄16  | 20 - 16d                                 |                      | 1330  |              |
| ST6224       | 16 ga. | 2 <sup>1</sup> / <sub>16</sub> | 23 <sup>5</sup> ⁄16  | 28 - 16d                                 |                      | 1890  |              |
| ST6236       | 14 ga. | 2 <sup>1</sup> /16             | 33 <sup>13</sup> ⁄16 | 40 - 16d                                 |                      | 2575  |              |
| ST9          | 16 ga. | 11/4                           | 9                    | 8 - 16d                                  |                      | 530   |              |
| ST12         | 16 ga. | 11/4                           | <b>1</b> 15⁄8        | 10 - <b>1</b> 6d                         |                      | 665   |              |
| ST18         | 16 ga. | 11/4                           | 17 <sup>3</sup> ⁄4   | 14 - 16d                                 |                      | 900   |              |
| ST22         | 16 ga. | 11⁄4                           | 21 <sup>5</sup> ⁄8   | 18 - 16d                                 |                      | 1025  |              |
| FHA6         | 12 ga. | 17⁄16                          | 6 <sup>3</sup> ⁄8    | 8 - 16d                                  |                      | 550   |              |
| FHA9         | 12 ga. | 17/16                          | 9                    | 8 - 16d                                  |                      | 550   |              |
| FHA12        | 12 ga. | 17/16                          | 11 <sup>5</sup> ⁄8   | 8 - 16d                                  |                      | 550   |              |
| FHA18        | 12 ga. | 17⁄16                          | 173⁄4                | 8 - 16d                                  |                      | 550   |              |
| FHA24        | 12 ga. | 17⁄16                          | 237/8                | 8 - 16d                                  |                      | 550   |              |
| FHA30        | 12 ga. | 17⁄16                          | 30                   | 8 - 16d                                  |                      | 550   |              |
| MSTI26       | 12 ga. | 2 <sup>1</sup> ⁄16             | 26                   | 26 - 10d x 1 <sup>1</sup> / <sub>2</sub> |                      | 1130  |              |
| MSTI36       | 12 ga. | 2 <sup>1</sup> /16             | 36                   | 36 - 10d x 1½                            |                      | 1565  |              |
| MSTI48       | 12 ga. | 2 <sup>1</sup> ⁄16             | 48                   | 48 - 10d x 1 <sup>1</sup> / <sub>2</sub> |                      | 2135  |              |
| MST160       | 12 ga. | 2 <sup>1</sup> / <sub>16</sub> | 60                   | 60 - 10d x 1 <sup>1</sup> / <sub>2</sub> |                      | 2760  |              |
| MST27        | 12 ga. | 2 <sup>1</sup> /16             | 27                   | 30 - 16d                                 | 4 - 1/2              | 2070  | 1295         |
| MST37        | 12 ga. | 2 <sup>1</sup> /16             | 371/2                | 42 - 16d                                 | 6 - ½                | 2860  | 1825         |
| MST48        | 12 ga. | 2 <sup>1</sup> ⁄16             | 48                   | 46 - 16d                                 | 8 - 1/2              | 3345  | 2225         |
| MST60        | 10 ga. | 2 <sup>1</sup> ⁄16             | 60                   | 56 - 16d                                 | 10 - 1/2             | 4350  | 2670         |
| HST2         | 7 ga.  | 2 <sup>1</sup> /2              | 21¼                  |                                          | 6 - <sup>5</sup> ⁄8  |       | 3130         |
| HST5         | 7 ga.  | 5                              | 21¼                  |                                          | 12 - <sup>5</sup> ⁄8 |       | 6380         |
| HST3         | 3 ga.  | 3                              | 25 <sup>1</sup> /2   |                                          | 6 - <sup>3</sup> ⁄4  |       | 4645         |
| HST6         | 3 ga.  | 6                              | 251/2                |                                          | 12 - 3⁄4             |       | 9350         |
| CMST12       | 12 ga. | 3                              | 40'                  | 118 - 10d                                |                      | 7230  |              |
| CMST12       | 12 ga. | 3                              | 40'                  | 100 - 16d                                |                      | 7230  |              |
| CMST14       | 14 ga. | 3                              | 52 <sup>1</sup> /2 ' | 88 - 10d                                 |                      | 5095  |              |
| CMST14       | 14 ga. | 3                              | 52 <sup>1</sup> /2 ' | 74 - 16d                                 |                      | 5095  |              |
| MST72        | 12 ga. | 2 <sup>1</sup> /16             | 72                   | 56 - 16d                                 | 10 - 1/2             | 4350  | 2670         |
| MST172       | 12 ga. | 2 <sup>1</sup> ⁄16             | 72                   | 72 - 10d x 1½                            |                      | 3310  |              |


TABLE 9A - CMST/ST/FHA/MSTI/MST/HST STRAP TIES

1. Loads provided above are at 100% duration. Increases not to exceed 33% shall be permitted if in accordance with the code.

| MODEL<br>NO. | ASTM<br>DESIGNATION      | YIELD<br>STRENGTH<br>(KPSI) | TENSILE<br>STRENGTH<br>(KPSI) |
|--------------|--------------------------|-----------------------------|-------------------------------|
| ST292        | A-653 CQ                 | 24                          | 32                            |
| ST2122       | A-653 LFQ                | 32                          | 43                            |
| ST2115       | A-653 LFQ                | 36                          | 48                            |
| ST2215       | A-653 LFQ                | 36                          | 48                            |
| ST6215       | A-653 LFQ                | 28                          | 38                            |
| ST6224       | A-653 LFQ                | 34                          | 46                            |
| ST6236       | A-653 LFQ                | 36                          | 48                            |
| ST9          | A-653 LFQ                | 28                          | 38                            |
| ST12         | A-653 LFQ                | 28                          | 38                            |
| ST18         | A-653 LFQ                | 28                          | 38                            |
| ST22         | A-653 LFQ                | 32                          | 43                            |
| FHA6         | A-653 CQ                 | 28                          | 38                            |
| FHA9         | A-653 CQ                 | 28                          | 38                            |
| FHA12        | A-653 CQ                 | 28                          | 38                            |
| FHA18        | A-653 CQ                 | 28                          | 38                            |
| FHA24        | A-653 CQ                 | 28                          | 38                            |
| FHA30        | A-653 CQ                 | 28                          | 38                            |
| MSTI26       | A-653 CQ                 | 20                          | 27                            |
| MSTI36       | A-653 CQ                 | 20                          | 27                            |
| MSTI48       | A-653 CQ                 | 24                          | 32                            |
| MSTI60       | A-653 CQ                 | 30                          | 40                            |
| MSTI72       | A-653 CQ                 | 30                          | 40                            |
| MST27        | A-653 CQ                 | 28                          | 38                            |
| MST37        | A-653 CQ                 | 36                          | 48                            |
| MST48        | A653 SQ GRADE 40 SPECIAL | 42                          | 56                            |
| MST60        | A653 SQ GRADE 40 SPECIAL | 42                          | 56                            |
| MST72        | A653 SQ GRADE 40 SPECIAL | 42                          | 56                            |
| HST2         | A570 GRADE 33            | 33                          | 52                            |
| HST5         | A570 GRADE 33            | 33                          | 52                            |
| HST3         | A570 GRADE 33            | 33                          | 52                            |
| HST6         | A570 GRADE 33            | 33                          | 52                            |
| CMST12       | A653 SQ GRADE 40 SPECIAL | 42                          | 56                            |
| CMST14       | A653 SQ GRADE 33         | 42                          | 56                            |
| MST72        | A653 SQ GRADE 40 SPECIAL | 42                          | 56                            |
| MSTI72       | A653 CQ                  | 30                          | 40                            |

#### **TABLE 9B - STRAP TIE MATERIAL SPECIFICATIONS**





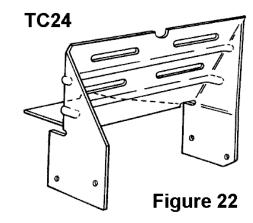



TABLE 10 — TC TRUSS CONNECTORS

| MODEL | FASTE   | INERS   | MAXIMUM<br>ALLOWABLE LOADS |                      |  |
|-------|---------|---------|----------------------------|----------------------|--|
| NO.   | -       |         | UPLIFT                     | LATERAL <sup>1</sup> |  |
| TC24  | 4 - 10d | 4 -10d  | 500                        | 165                  |  |
| TC26  | 5 - 10d | 6 - 10d | 625                        | 265                  |  |

1. The lateral load is parallel to the top plate.

| TABLE 11 — VBP AND VP KNEE BRACE |                   |     |           |                                      |               |  |  |  |  |  |
|----------------------------------|-------------------|-----|-----------|--------------------------------------|---------------|--|--|--|--|--|
|                                  | H FASTENERS       |     | FASTENERS | ALLOWABLE TENSION LOADS <sup>1</sup> |               |  |  |  |  |  |
| MODEL NO.                        | (BEAM DEPTH)      | L   | (TOTAL)   | FLOOR (100)                          | MAXIMUM (133) |  |  |  |  |  |
| VB-5                             | 10" - 15"         | 5'  | 16 - N54A | 990                                  | 1240          |  |  |  |  |  |
| VB-7                             | 15" - 22-1/2"     | 7'  | 16 - N54A | 990                                  | 1240          |  |  |  |  |  |
| VB-8                             | 22-1/2" - 28-1/2" | 8'  | 16 - N54A | 990                                  | 1240          |  |  |  |  |  |
| VB-10                            | 28-1/2" - 36"     | 10' | 16 - N54A | 990                                  | 1240          |  |  |  |  |  |
| VB-12                            | 36" - 42"         | 12' | 16 - N54A | 990                                  | 1240          |  |  |  |  |  |
| VBP-5                            | 10" - 15"         | 41" | 18 - N54A | 990                                  | 1240          |  |  |  |  |  |
| VBP-7                            | 15" - 22-1/2"     | 53" | 18 - N54A | 990                                  | 1240          |  |  |  |  |  |
| VBP-8                            | 22-1/2" - 28-1/2" | 59" | 18 - N54A | 990                                  | 1240          |  |  |  |  |  |
| VBP-10                           | 28-1/2" - 36"     | 71" | 18 - N54A | 990                                  | 1240          |  |  |  |  |  |
| VBP-12                           | 36" - 42"         | 83" | 18 - N54A | 990                                  | 1240          |  |  |  |  |  |

#### . . . . . . ..

1. Values shown are for tension only, for either leg when installed with N54A fasteners. Use of the VBP and VB Knee Brace to resist compression load, is beyond the scope of this report.

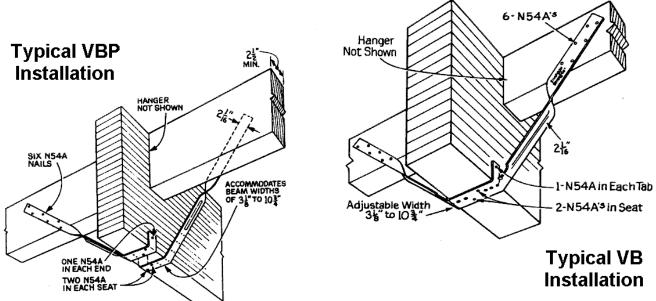
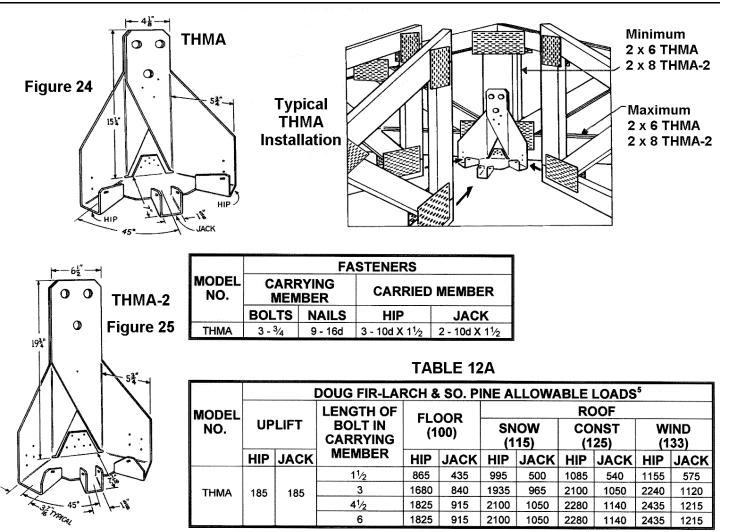




Figure 23



|              | FASTENERS |               |                |                |  |  |  |  |  |
|--------------|-----------|---------------|----------------|----------------|--|--|--|--|--|
| MODEL<br>NO. | U.A.      | RYING<br>IBER | CARRIED MEMBER |                |  |  |  |  |  |
|              | BOLTS     | NAILS         | HIP            | JACK           |  |  |  |  |  |
| THMA-2       | 3 - 1     | 9 - 16d       | 5 - 10d X 11/2 | 2 - 10d X 11/2 |  |  |  |  |  |

| TΑ | BL | E 1 | 2B |
|----|----|-----|----|
|    |    |     |    |

|        | DOUG FIR-LARCH & SO. PINE ALLOWABLE LOADS⁵ |           |                     |       |      |               |      |                |      |               |      |
|--------|--------------------------------------------|-----------|---------------------|-------|------|---------------|------|----------------|------|---------------|------|
| MODEL  |                                            | LENGTH OF | FLOOR               |       |      |               | R    | DOF            |      |               |      |
| NO.    | UP                                         | LIFT      | BOLT IN<br>CARRYING | (100) |      | SNOW<br>(115) |      | CONST<br>(125) |      | WIND<br>(133) |      |
|        | HIP                                        | JACK      | MEMBER              | HIP   | JACK | HIP           | JACK | HIP            | JACK | HIP           | JACK |
|        |                                            |           | 11/2                | 1155  | 575  | 1330          | 665  | 1445           | 720  | 1535          | 770  |
| THMA-2 | 520                                        | 250       | 3                   | 2240  | 1120 | 2580          | 1290 | 2800           | 1400 | 2980          | 1490 |
|        |                                            |           | 41/2                | 3240  | 1620 | 3730          | 1865 | 3880           | 1940 | 3880          | 1940 |
|        |                                            |           | 6                   | 3240  | 1620 | 3730          | 1865 | 3880           | 1940 | 3880          | 1940 |

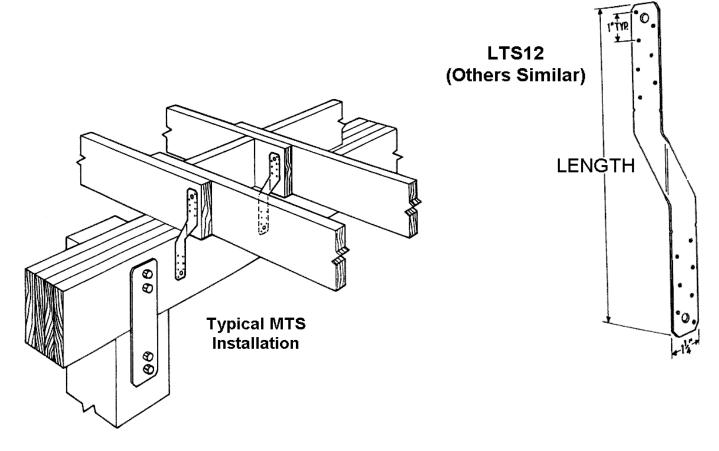
1. Allowable loads are per member.

2. Snow, construction and wind loads are 115%, 125%, and 133% of floor live load, respectively, unless limited by other criteria.

3. Uplift loads include a 33% increase for wind or earthquake loading with no further increase allowed. Reduce the uplift by 33% for normal loading criteria such as cantilever construction.

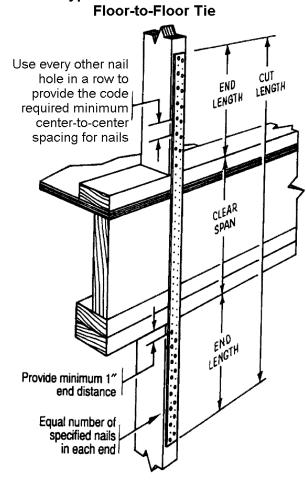
4. Minimum lumber specific gravity is G = .50.

5. The hip members are the diagonal members as indicated in Figure 24.


|           | DIMENSIONS |                                | MAX. ALLOWABLE <sup>3, 4</sup> |
|-----------|------------|--------------------------------|--------------------------------|
| MODEL NO. | L          | FASTENERS <sup>2</sup> (TOTAL) | LOADS                          |
| LTS12     | 12         | 12 - 10d                       | 775                            |
| LTS16     | 16         | 12 - 10d                       | 775                            |
| LTS18     | 18         | 12 - 10d                       | 775                            |
| LTS20     | 20         | 12 - 10d                       | 775                            |
| MTS12     | 12         | 14 - 10d                       | 1000                           |
| MTS16     | 16         | 14 - 10d                       | 1000                           |
| MTS18     | 18         | 14 - 10d                       | 1000                           |
| MTS20     | 20         | 14 - 10d                       | 1000                           |
| MTS30     | 30         | 14 - 10d                       | 995                            |

#### TABLE 13 — LIGHT TWISTS STRAP

1. LTS12 through LTS20 and MTS12 through MTS20 have additional nail holes.

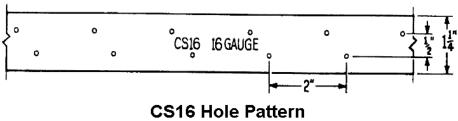

2. Install half of the fasteners on each end of the strap to achieve the full load.

- 3. Fasteners are common nails.
- 4. Multiply the maximum allowable load by 0.92 if  $10d \times 1-1/2$ " nails are used instead of 10d commons.
- 5. A load duration adjustment of 33% has already been applied.



|                     | TABLE 14 — CS COILED STRAP                                                  |                                                                                             |                                                                                                                                                            |                                                                        |                                                                             |  |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
|                     | DOUGLAS FIR-LARCH and SOUTHERN PINE <sup>3</sup>                            |                                                                                             |                                                                                                                                                            |                                                                        |                                                                             |  |  |  |  |  |
| MODEL               | FASTENERS                                                                   | END                                                                                         | сит                                                                                                                                                        | ALLOV<br>LOA                                                           |                                                                             |  |  |  |  |  |
| NO.                 | TOTAL                                                                       | LENGTH                                                                                      | LENGTH                                                                                                                                                     | 100% <sup>2</sup>                                                      | 133%                                                                        |  |  |  |  |  |
| CS16                | 28 - 8d                                                                     | 15                                                                                          | Clear Span + 30                                                                                                                                            | 1235                                                                   | 1650                                                                        |  |  |  |  |  |
| 0310                | 22 - 10d                                                                    | 12                                                                                          | Clear Span + 24                                                                                                                                            | 1235                                                                   | 1650                                                                        |  |  |  |  |  |
| CS18                | 22 - 8d                                                                     | 12                                                                                          | Clear Span + 24                                                                                                                                            | 950                                                                    | 1270                                                                        |  |  |  |  |  |
| 0518                | 18 - 10d                                                                    | 10                                                                                          | Clear Span + 20                                                                                                                                            | 950                                                                    | 1270                                                                        |  |  |  |  |  |
| CS20                | 18 - 8d                                                                     | 10                                                                                          | Clear Span + 20                                                                                                                                            | 750                                                                    | 1005                                                                        |  |  |  |  |  |
| 0520                | 14 - 10d                                                                    | 8                                                                                           | Clear Span + 16                                                                                                                                            | 750                                                                    | 1005                                                                        |  |  |  |  |  |
| 0000                | 14 - 8d                                                                     | 8                                                                                           | Clear Span + 16                                                                                                                                            | 620                                                                    | 825                                                                         |  |  |  |  |  |
| 0322                | CS22 12 - 10d                                                               |                                                                                             |                                                                                                                                                            |                                                                        |                                                                             |  |  |  |  |  |
|                     | 12 - 10d                                                                    | 6-1/2                                                                                       | Clear Span + 13                                                                                                                                            | 620                                                                    | 825                                                                         |  |  |  |  |  |
|                     | 12 - 10d                                                                    |                                                                                             | Clear Span + 13<br>E-PINE FIR <sup>3</sup>                                                                                                                 | 620                                                                    | 825                                                                         |  |  |  |  |  |
| MODEL               | 12 - 10d                                                                    | SPRUC                                                                                       | E-PINE FIR <sup>3</sup>                                                                                                                                    | 620<br>ALLOV<br>LOA                                                    | VABLE                                                                       |  |  |  |  |  |
| MODEL<br>NO.        |                                                                             |                                                                                             |                                                                                                                                                            | ALLOV                                                                  | VABLE                                                                       |  |  |  |  |  |
| NO.                 | FASTENERS                                                                   | SPRUC                                                                                       | E-PINE FIR <sup>3</sup>                                                                                                                                    | ALLOV                                                                  | VABLE                                                                       |  |  |  |  |  |
|                     | FASTENERS<br>TOTAL                                                          | SPRUC<br>END<br>LENGTH                                                                      | E-PINE FIR <sup>3</sup><br>CUT<br>LENGTH                                                                                                                   | ALLOV<br>LOA<br>100% <sup>2</sup>                                      | VABLE<br>ADS<br>133%                                                        |  |  |  |  |  |
| <b>NO</b> .<br>CS16 | FASTENERS<br>TOTAL<br>32 - 8d                                               | SPRUC<br>END<br>LENGTH<br>15-3/4                                                            | E-PINE FIR <sup>3</sup><br>CUT<br>LENGTH<br>Clear Span + 31-1/2                                                                                            | ALLOV<br>LOA<br>100% <sup>2</sup><br>1235                              | VABLE<br>ADS<br>133%<br>1650                                                |  |  |  |  |  |
| NO.                 | <b>FASTENERS</b><br><b>TOTAL</b><br>32 - 8d<br>26 - 10d                     | <b>SPRUC</b><br><b>END</b><br><b>LENGTH</b><br>15-3/4<br>13-1/4                             | E-PINE FIR <sup>3</sup><br>CUT<br>LENGTH<br>Clear Span + 31-1/2<br>Clear Span + 26-1/2                                                                     | ALLOV<br>LOA<br>100% <sup>2</sup><br>1235<br>1235                      | <b>VABLE</b><br><b>133%</b><br>1650<br>1650                                 |  |  |  |  |  |
| NO.<br>CS16<br>CS18 | <b>FASTENERS</b><br><b>TOTAL</b><br>32 - 8d<br>26 - 10d<br>24 - 8d          | <b>SPRUC</b><br><b>END</b><br><b>LENGTH</b><br>15-3/4<br>13-1/4<br>11-3/4                   | E-PINE FIR <sup>3</sup><br>CUT<br>LENGTH<br>Clear Span + 31-1/2<br>Clear Span + 26-1/2<br>Clear Span + 23-1/2                                              | ALLOV<br>LOA<br>100% <sup>2</sup><br>1235<br>1235<br>950               | <b>VABLE</b><br><b>133%</b><br>1650<br>1650<br>1270                         |  |  |  |  |  |
| NO.<br>CS16         | FASTENERS   TOTAL   32 - 8d   26 - 10d   24 - 8d   20 - 10d                 | <b>SPRUC</b><br><b>END</b><br><b>LENGTH</b><br>15-3/4<br>13-1/4<br>11-3/4<br>9-3/4          | E-PINE FIR <sup>3</sup><br>CUT<br>LENGTH<br>Clear Span + 31-1/2<br>Clear Span + 26-1/2<br>Clear Span + 23-1/2<br>Clea Span + 19-1/2                        | ALLOV<br>LOA<br>100% <sup>2</sup><br>1235<br>1235<br>950<br>950        | <b>VABLE</b><br><b>133%</b><br>1650<br>1650<br>1270<br>1270                 |  |  |  |  |  |
| NO.<br>CS16<br>CS18 | FASTENERS<br>TOTAL<br>32 - 8d<br>26 - 10d<br>24 - 8d<br>20 - 10d<br>20 - 8d | <b>SPRUC</b><br><b>END</b><br><b>LENGTH</b><br>15-3/4<br>13-1/4<br>11-3/4<br>9-3/4<br>9-3/4 | E-PINE FIR <sup>3</sup><br>CUT<br>LENGTH<br>Clear Span + 31-1/2<br>Clear Span + 26-1/2<br>Clear Span + 23-1/2<br>Clea Span + 19-1/2<br>Clear Span + 19-1/2 | ALLOV<br>LOA<br>100% <sup>2</sup><br>1235<br>1235<br>950<br>950<br>750 | <b>VABLE</b><br><b>133%</b><br>1650<br>1650<br>1270<br>1270<br>1270<br>1005 |  |  |  |  |  |

#### TABLE 14 — CS COILED STRAP




Typical CS Installation as a

1. When applicable LB/NAIL 100% value shall be increased for load duration according to the code.

- ALLOWABLE LOADS 100% value is the maximum steel capacity and shall not be increased for duration of load except as otherwise indicated.
- 3. Minimum lumber specific gravity is G = .50 for Douglas Fir-Larch and Southern Pine lumber and G = .42 for Spruce-Pine Fir lumber.

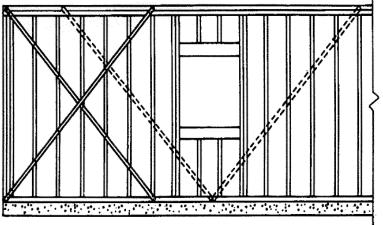


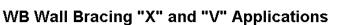


(all other CS straps similiar)

Figure 28

| MODEL<br>NO. | DIMEN                    | SIONS             | PARTS         | ANGLE            | FASTENERS |        |  |
|--------------|--------------------------|-------------------|---------------|------------------|-----------|--------|--|
|              | PART<br>LENGTH WIDTH     |                   | PER<br>CARTON | AND<br>WALL SIZE | PLATES    | STUDS  |  |
| WB106C       | 9' - 6"                  | 11⁄4              | 15            | 8' @ 60"         | 3 - 16d   | 1 - 8d |  |
| WB126C       | 11' - 4 <sup>3</sup> ⁄4" | 11⁄4              | 12            | 8' @ 45"         | 3 - 16d   | 1 - 8d |  |
| WB143C       | 14" - 3"                 | 1 <sup>1</sup> ⁄4 | 10            | 10' @ 45"        | 3 - 16d   | 1 - 8d |  |


### TABLE 15 — WB WALL BRACING


1. The WB shall be installed in pairs.

2. The WB is designed to resist wall racking during construction. It is not designed to replace a shear wall.

3. The WB is  $1\frac{1}{4}$  inches wide with nails spaced 1 inch on center along the strap and  $\frac{1}{2}$  inch apart.

- 4. The product can be ordered flat (WB) or coiled (WBC).
- 5. Maximum load capacity is 180 lbs.





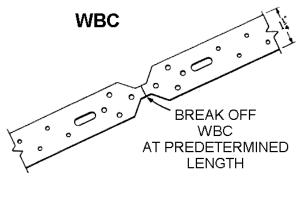


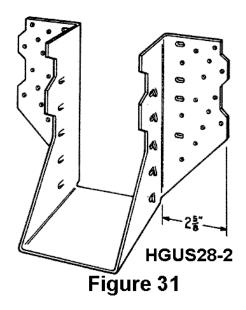

Figure 30

Figure 29

| SOUTHERN YELLOW PINE <sup>4</sup> |            |        |           |                    |          |                     |       |      |      |      |
|-----------------------------------|------------|--------|-----------|--------------------|----------|---------------------|-------|------|------|------|
|                                   | DIMENSIONS |        | FASTENERS |                    |          | AI                  | LOWAB |      | os   |      |
| MODEL NO.                         | W          | Н      | В         | JOIST <sup>2</sup> | HEADER   | UPLIFT <sup>1</sup> | 100%  | 115% | 125% | 133% |
| HGUS26-2                          | 3-7/16     | 4-1/2  | 4         | 8-16d              | 20 -16d  | 2000                | 3985  | 4580 | 4835 | 4835 |
| HGUS28-2                          | 3-7/16     | 6-1/2  | 4         | 10 -16d            | 36 -16d  | 2650                | 6605  | 6665 | 6665 | 6665 |
| HGUS210-2                         | 3-7/16     | 8-1/2  | 4         | 12 -16d            | 46 -16d  | 3665                | 7165  | 7165 | 7165 | 7165 |
| HGUS46                            | 3-9/16     | 4-7/16 | 4         | 8 - 16d            | 20 - 16d | 2000                | 3985  | 4580 | 4835 | 4835 |
| HGUS48                            | 3-9/16     | 6-7/16 | 4         | 10 - 16d           | 36 - 16d | 2650                | 6605  | 6665 | 6665 | 6665 |
| HGUS410                           | 3-9/16     | 8-7/16 | 4         | 12 - 16d           | 46 - 16d | 3665                | 7165  | 7165 | 7165 | 7165 |

#### TABLE 16A — HGUS HANGERS

## TABLE 16B


|           | DOUGLAS FIR <sup>4</sup> |          |    |                    |          |                     |                 |      |      |      |  |
|-----------|--------------------------|----------|----|--------------------|----------|---------------------|-----------------|------|------|------|--|
|           | D                        | IMENSION | IS | FASTENERS          |          |                     | ALLOWABLE LOADS |      |      | DS   |  |
| MODEL NO. | W                        | н        | В  | JOIST <sup>2</sup> | HEADER   | UPLIFT <sup>1</sup> | 100%            | 115% | 125% | 133% |  |
| HGUS26-2  | 3-7/16                   | 4-1/2    | 4  | 8-16d              | 20 -16d  | 2000                | 3695            | 4250 | 4620 | 4835 |  |
| HGUS28-2  | 3-7/16                   | 6-1/2    | 4  | 10 -16d            | 36 -16d  | 2650                | 6140            | 6665 | 6665 | 6665 |  |
| HGUS210-2 | 3-7/16                   | 8-1/2    | 4  | 12 -16d            | 46 -16d  | 3385                | 7165            | 7165 | 7165 | 7165 |  |
| HGUS46    | 3-9/16                   | 4-7/16   | 4  | 8 - 16d            | 20 - 16d | 2000                | 3695            | 4250 | 4620 | 4835 |  |
| HGUS48    | 3-9/16                   | 6-7/16   | 4  | 10 - 16d           | 36 - 16d | 2650                | 6140            | 6665 | 6665 | 6665 |  |
| HGUS410   | 3-9/16                   | 8-7/16   | 4  | 12 - 16d           | 46 - 16d | 3385                | 7165            | 7165 | 7165 | 7165 |  |

1. Uplift loads have been increased 33% for wind or earthquake loading, no further increase allowed.

2. Nails driven into the joist are driven at an angle through the joist into the header.

3. The connectors provide a torsional resistance up to a maximum joist depth of 44".

4. Minimum lumber specific gravity is G = .50 for Douglas Fir and G = .55 for Southern Yellow Pine.



# **GENERAL NOTES**

- 1. The allowable loads shown in Tables No. 1 through No. 16 are in pounds. Dimensions in inches.
- 2. Allowable loads are based on Douglas Fir Larch, specific Gravity G = 0.50 unless noted otherwise. If the connectors are used on lesser grades or other types of wood than those specified in this report, load capacities shall be verified by tests or calculations by a registered professional engineer.
- 3. The bolts are ASTM A 307 and the bolt design values are based on the 1991 edition of the National Design Specifications.
- 4. Unless noted, no load duration increases are allowed.
- 5. Unless otherwise noted, uplift loads have been increased 1.33 for wind or earthquake loading with no further increase allowed.
- 6. All multiple members shall be fastened together to act as a single unit.
- 7. Allowable loads noted in the design tables are for fasteners only. All framing members shall be designed in accordance with the requirements of their appropriate design specifications as referenced in the adopted Building Code.
- 8. The connectors have not been evaluated for simultaneous loading conditions. Allowable loads shown in the tables for uplift and lateral load shall not be combined. When designing using metal connectors, the connectors shall be assumed to resist loads in one direction only.
- 9. 1lbf = 4.45 N 1 in = 25.4 mm